Varsaw University of Technology

I:aculty of lPower and

 Aeronautical lingineeringWARSAW UNIVERSITY OF TECHNOLOGY

Institute of Aeronautics and Applied Mechanics

Finite element method 2 (FEM 2)

Mass matrix of a beam
11.2021
mass matrix of a beam element

Kinetic energy of a small part:
(rectangular.

$$
d T_{e}=\frac{1}{2} d m \dot{W}^{2}=\frac{1}{2} \rho A d \xi \dot{w}^{2}, \dot{w}=\frac{d w}{d t}
$$

cress-section)

$$
\begin{aligned}
& \underset{1 \times 4}{\lfloor q\rfloor}\rfloor\left\lfloor q_{1}, q_{2}, q_{3}, q_{4}\right\rfloor \\
& A=b \cdot h \\
& J_{y}=\frac{6 h^{3}}{12}
\end{aligned}
$$

Kinetic energy of a finite element:

$$
\begin{aligned}
& =\frac{1}{2} L \dot{q} J_{e} \cdot \int_{1 \times 4}^{l e} \rho A\left[\begin{array}{llll}
N_{1} N_{1} & N_{1} N_{2} & N_{1} \cdot N_{3} & N_{1} \cdot N_{4} \\
N_{2} N_{1} & N_{2} N_{2} & N_{2} \cdot N_{3} & N_{2} \cdot N_{4} \\
N_{3} N_{1} & N_{3} \cdot N_{2} & N_{3} \cdot N_{3} & N_{3} \cdot N_{4} \\
N_{q} N_{1} & N_{4} N_{2} & N_{4} \cdot N_{3} & N_{4} \cdot N_{4}
\end{array}\right] d \xi \cdot\{\dot{q}\}_{e} \Rightarrow
\end{aligned}
$$

where:

$$
\left.\begin{array}{l}
N_{1}(\xi)=1-\frac{3}{l_{e}^{2}} \xi^{2}+\frac{2}{l^{3}} \xi^{3} \\
N_{2}(\xi)=\xi-\frac{2}{l e} \cdot \xi^{2}+\frac{1}{e^{e}} \cdot \xi^{3} \\
N_{3}(\xi)=\frac{3}{l^{2} \xi^{2}}-\frac{2}{l^{3}} \xi^{3} \\
N_{4}(\xi)=-\frac{1}{l e} \xi^{2}+\frac{1}{l^{2}} \xi^{3}
\end{array}\right\} \text { shape functions }
$$

$$
\Rightarrow T_{e}=\frac{1}{2}\left[\dot{q} \dot{q}_{1 \times 4}\right]_{e} \cdot\left[m_{4 \times 4}\right]_{e} \cdot\{\dot{q} \dot{q}\}_{e}
$$

consistent mass matrix of a beam FE.

$$
[\mathrm{m}]_{e}=\frac{\rho A l e}{420}\left[\begin{array}{cccc}
156 & 22 l & 54 & -13 l e \\
22 l & 4 l^{2} & 13 l & -3 l e \\
54 & 13 l e & 156 & -22 l \\
-13 l e & -3 l e & -22 l e & 4 l^{2}
\end{array}\right]
$$

Example: Find natural frequencies and vibration modes in plane $X Z$ for a cantilever beam

$$
\begin{gathered}
\left([K]-\omega^{2}[M]\right) \\
4 \times 4 \times 4\} \\
\left(\frac{2 E J_{y}}{l^{3}}\left[\begin{array}{cccc}
6 & 3 l & -6 & 3 L \\
3 l & 2 l^{2} & -3 l & l^{2} \\
-6 & -3 l & 6 & -3 l \\
3 l & l^{2} & -3 l & 2 l^{2}
\end{array}\right]-\frac{\omega^{2} \rho A L}{420}\left[\begin{array}{cccc}
156 & 22 l & 54 & -13 l \\
22 L & 4 l^{2} & 13 l & -3 l \\
54 & 13 l & 156 & -22 l \\
-13 l & -3 l & -22 l & 4 l^{2}
\end{array}\right]\right) \cdot\left\{\begin{array}{c}
4 \times 1
\end{array}\right)=\left\{\begin{array}{c}
4 \times 1
\end{array}\right)
\end{gathered}
$$ a new coustant: $\lambda=\frac{\rho A L^{4}}{840 E J_{y}} \omega^{2}, q_{1}=0, q_{2}=0$

$$
\left(\left[\begin{array}{cc}
6 & -3 l \\
-3 l & 2 l^{2}
\end{array}\right]-\lambda\left[\begin{array}{cc}
156 & -22 l \\
-22 L & 4 l^{2}
\end{array}\right]\right) \cdot\left\{\begin{array}{l}
q_{3} \\
q_{4}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{cc}
6-156 \lambda & (22 \lambda-3) \cdot l \\
(22 \lambda-3) \cdot l & (2-4 \lambda) \cdot l^{2}
\end{array}\right]\right)=0 \\
& (6-156 \lambda)(2-4 \lambda) l^{2}-(22 \lambda-3)^{2} l^{2}=0 \\
& \left(12-24 \lambda-312 \lambda+624 \cdot \lambda^{2}\right) l^{2}-484 \lambda^{2} l^{2}+132 \lambda l^{2}-9 l^{2}=0 \\
& 140 \lambda^{2}-204 \lambda+3=0 \Rightarrow \\
& \lambda_{1}=1.4857 \cdot 10^{-2} \quad, \lambda_{2}=1.4423
\end{aligned}
$$

$$
\left[\begin{array}{ll}
6-156 \lambda_{i} & \left(22 \lambda_{i}-3\right) l \\
\left(22 \lambda_{i}-3\right) l & \left(2-4 \lambda_{i}\right) l^{2}
\end{array}\right] \cdot\left\{\begin{array}{l}
q_{3} \\
q_{4}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

two linearly dependent equations
1st:

$$
\begin{gathered}
\left(6-156 \lambda_{i}\right) q_{3}+\left(22 \lambda_{i}-3\right) l \cdot q_{4}=0 \\
q_{4}=\frac{156 \lambda_{i}-6}{22 \lambda_{i}-3} \cdot \frac{q_{3}}{l}
\end{gathered}
$$

if $q_{3}=\Delta$ then: $q_{4}\left(\lambda_{1}\right)=1.38 \cdot \frac{\Delta}{l}$

$$
q_{4}\left(\lambda_{2}\right)=7.62 \cdot \frac{\Delta}{l}
$$

